Impacts of Fire on Streams: Watershed Changes, Assessment, and Mitigation

Peter M. Wohlgemuth

USDA

USDA Forest Service Pacific Southwest Research Station

Problem

Wildfire renders the landscape susceptible to flooding and accelerated erosion and sedimentation, greatly affecting natural resources

Background

Runoff, erosion, and sedimentation are inevitable

Stripping of soil, sediment, and rock material from the highlands by the forces of gravity and running water and deposition in the lowlands

Fire is a natural part of most terrestrial ecosystems

Background

Southern California has some of the highest erosion rates in the world

Hillslope erosion consists of both gravitational and hydrologic processes

Channel sediment loading and flushing is the dominant watershed transport mechanism

Unburned Conditions

Complete vegetation canopy Spongy litter layer Coarse-textured soils Large infiltration capacity

Immediate flush of dry erosion

Loss of vegetation and litter

Changes in soil properties reduce infiltration

Extra delivery of water and sediment from the hillsides to the stream channels

More rain reaches the ground (loss of canopy and litter layer)

Infiltration is greatly reduced

Overland flow greatly increases

Stream flow greatly increases

Post-fire erosion greatly increases

Dry ravel

Soil water repellency

Post-fire rilling

Channel loading

Channel scour

Small Stream Erosion

Downstream sedimentation

Increase temperature (remove shade)

Increase turbidity (muddy water)

Watershed Changes

Post-fire Water Quality

Change water chemistry (ash, leachate, sediment)

Identify values at risk

Identify the degree of burn

Visual inspection

Aerial imagery

Assessment

Factors Influencing Fire Impacts on Streams

Proximity

Topography

Burned area Intervening area

Presence of engineering structures

Patterns and timing of post-fire rainfall

Mitigation

Intent of Emergency Mitigation

Cost-effective, landscape-level erosion control

Reduce and delay accelerated runoff and sediment yield until watersheds function normally again

Environmentally benign – including ground disturbance

Hillslope Treatments

Purpose is to control runoff and erosion on the hillsides

Treatments include:

GroundMechanicalChemicalCoversBarriersSprays

SeedingContour logsWetting agentsMulchingFiber rollsSoil flocculantsErosion fabricsTerraces/trenching

Channel Treatments

Purpose is to trap sediment and control scour in the channels

Treatments include:

Check dams – straw, logs, rock Bank stabilization – rock armoring, vegetation Grade control structures Debris basins a must be properly defined.

engineering structures that must be properly designed and constructed

Bank stabilization

Straw bale check dams

Straw bale check dams

Log check dams

Log check dams

Stream mitigation treatments

Difficult to install

Labor intensive

Marginal benefits

Can increase the hazards

Summary / Conclusions

Erosion is inevitable and southern California experiences some of the highest erosion rates in the world

Fire further accelerates flooding and erosion on both hillslopes and in stream channels

Postfire flooding and erosion can negatively affect natural resources

Summary / Conclusions

Assessment of potential postfire impacts to streams includes factors of proximity, topography, the presence of engineering structures, and rainfall

Mitigation of postfire impacts to streams is costly and often ineffective

Postfire impacts to streams continues to be a major land management challenge

Questions?

