Kris Taniguchi-Quan, Ph.D., *Senior Scientist* Southern California Coastal Research Project

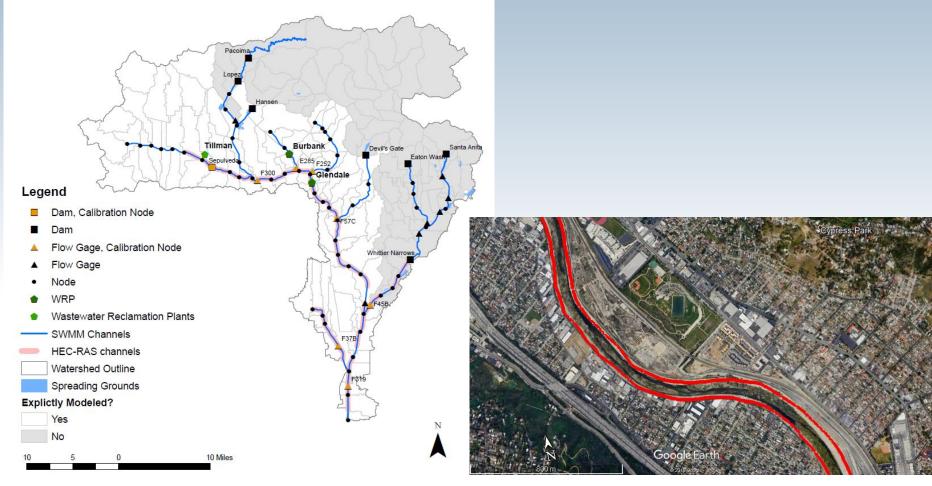
Los Angeles River Flows Project: Development of Decision Support Tools for Flows in the Los Angeles River

Los Angeles River Flows Project: Development of Decision Support Tools for Flows in the Los Angeles River

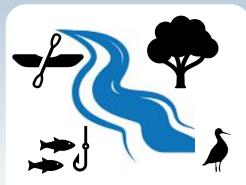
Dr. Kris Taniguchi-Quan Southern California Coastal Water Research Project

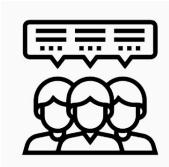
LA River's Changing Water Use Practices

Storm Drain Discharge


Treated Wastewater

Overall Question

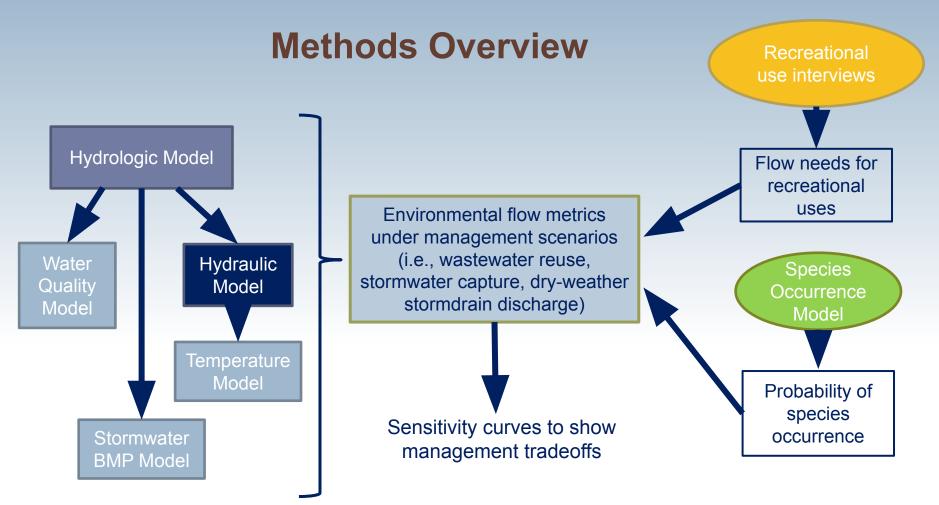

What are the potential impacts (+ or -) to existing and potential future instream beneficial uses in the Los Angeles River caused by reductions of wastewater treatment plant discharges and/or stormwater capture?



Analysis Domain

LA River Environmental Flows Project Goals

Quantify relationship between streamflow and beneficial uses in LA River


Provide toolkit to evaluate effects of stormwater management and 1211 wastewater change petitions Engage local stakeholders and receive feedback on study and application

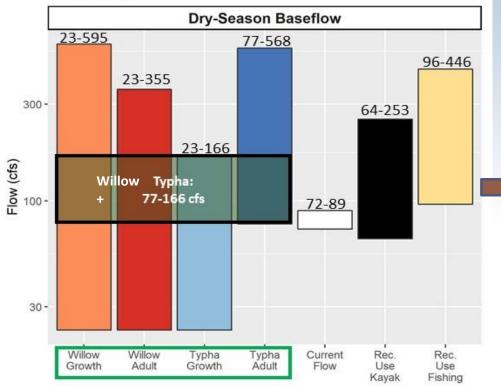
Overall Outcomes

- We have developed a set of tools that can be used to inform decisions about establishing flow management targets
- We have developed tools that can easily be used to evaluate potential effects of a broad range of potential management scenarios on in-river flows
- The tools are highly flexible and transferable
 https://sccwrp.shinyapps.io/lar_eflows_shinyapp/
- There is broad agreement among stakeholders on the application and utility of these tools

Species Occurrence Models

- Not associated with currently designated beneficial uses
- Not currently observed in LA River •

Occurrence Model	Habitat	End member species
	Cold water behitet	End member speciesSanta Ana SuckerUnarmored threespine sticklebackSteelhead/Rainbow troutCladophora sppTyphaDuckweedBlack WillowAfrican clawed frogMosquitofish
Probability of species occurrence Cold water habitat Santa Ana Sucker Indicator species and habitats Migration habitat Steelhead/Rainbow trout Vading shorebird habitat Cladophora spp Freshwater marsh habitat Typha Duckweed Riparian habitat Riparian habitat Black Willow Warm water habitat African clawed frog	Unarmored threespine stickleback	
	Migration habitat	Steelhead/Rainbow trout
	Wading shorebird habitat	Cladophora spp
	Freshwater marsh habitat	Typha
		Duckweed
t of	Riparian habitat	Black Willow
Probabilit		African clawed frog
	warm water habitat	Mosquitofish
Medium High		133

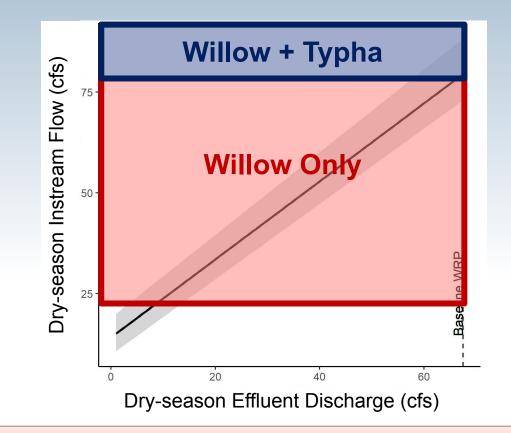

N A

Species

Overall Flow Management Targets

Flow Ranges

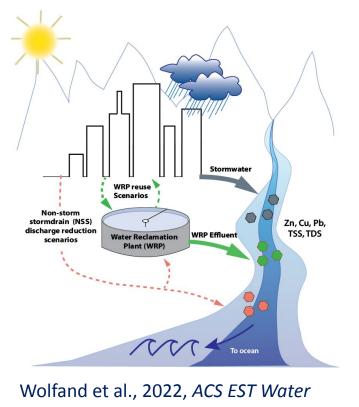
GLEN Example

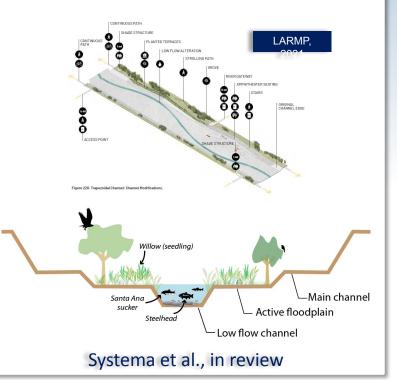


TODADIII	ty: Mediu	ım (50%)	41. 				
Dry-Season Baseflow		Wet-Season Baseflow		Wet-Season Peak Flow			
Current flow range (cfs)	Optimal flow range (cfs)	Duration	Current flow range (cfs)	Optimal flow range (cfs)	Duration	CurrentAnnual Peak Q range¹ (cfs)	Optimal flow range (cfs)
72-89	77-166	April - September	82-130	77-355	October - March	8,188-32,608	< 568

¹ Current annual peak Q range represents the 10^h and 90^h percentile of annual peak discharge calculated from the hourly f timeseries period of record (WY 2011-2017)

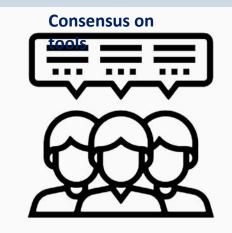
Targets can be developed for every reach of the river


Sensitivity Curves to Assess Effects of Water Reuse


Curves allow for consideration of a virtually unlimited number of scenarios

Water Quality & Restoration Analyses

How might management scenarios affect water quality?



What changes to channel design can accommodate altered flows to support ecological beneficial uses?

Summary of Coordination and Outreach

- Year-long scoping process 4 stakeholder meetings
- Seven TAC meetings since January 2019
- Four stakeholder workgroup meetings
- Two workshops on recreational uses

 Numerous briefings and presentations to community groups and associated LA River programs

https://www.sccwrp.org/about/research-areas/ecohydrology/los-angeles-river-flows-project/

Questions

Kris Taniguchi-Quan kristinetq@sccwrp.org

> Eric Stein erics@sccwrp.org

Katie Irving katiei@sccwrp.org

www.sccwrp.org

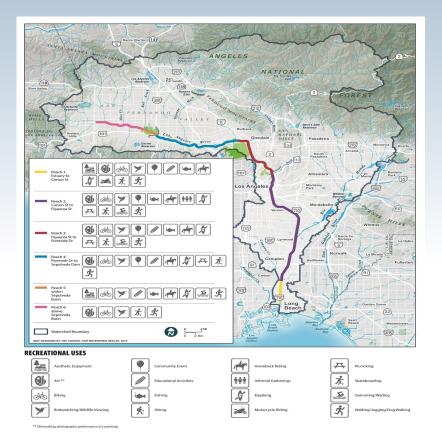
Yareli Sanchez¹, Terri Hogue², Jordyn Wolfand³, Anneliese Systema⁴, Daniel Philippus², Reza Abdi⁴, Liz Gallo², Victoria Hennon²

¹Council for Watershed Health ⁴Brown and Caldwell ²Colorado School of Mines ⁵US NCAR ³University of Portland

EXTRA SLIDES

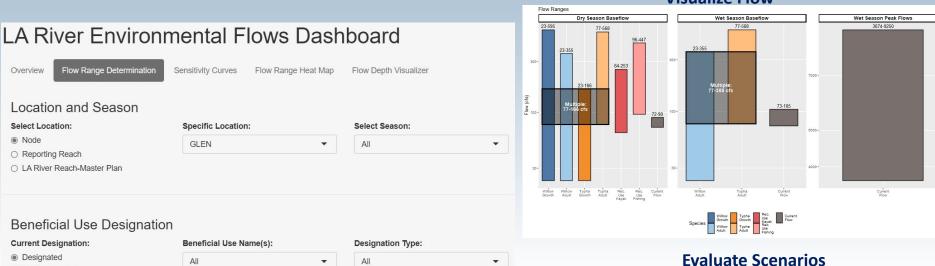
Flow Needs Associated with Recreational Uses

Review of Recreational Uses and Associated Flow Needs Along the Main-stem of Los Angeles River


Southern California Coastal Water Research Project SCCWRP Technical Report #1088 Series of targeted surveys, interviews and workshops

Understand recreational uses that occur along the main-stem of the Los Angeles River and the associated flow needs Recreational use interviews

Targeted interviews


- Snowball surveys
- Social media outreach
- Workshops with > 40 participants

Recreational Uses in the LA River

- The Los Angeles River host a rich diversity of recreational uses in both soft bottom and hard bottom reaches
 - Kayaking
 - Fishing
 - Wildlife viewing
- Uses vary seasonally and by location and are influenced by
 - Duration of flow
 - Depth of flow
 - Velocity

Online Dashboard

Species

Probability of Occurrence:	Species Synthesis:
Medium	Yes
	O No

Type of Species Synthesis: ○ Single

Multiple

If Species Synthesis is Yes - synthesis ruleset applied to get overall flow recommendations

Otherwise, flow recommendations by individual life stages

https://sccwrp.shinyapps.io/lar eflows shinyap nl

Visualize Flow

ENHANCED BY Google

SOUTHERN CALIFORNIA COASTAL WATER RESEARCH PROJECT

Applying next-generation science to aquatic ecosystems management A PUBLIC AGENCY Research Areas Bioassessment Ecohydrology Eutrophication Climate Change Sediment Quality Emerging Contaminants Microbial Water Quality Regional Monitoring

Home » About » Research Areas » Ecohydrology » Los Angeles River Environmental Flows Project

Los Angeles River Environmental Flows Project

SCCWRP is working with the State Water Resources Control Board and the Los Angeles Regional Water Quality Control Board, in cooperation with local municipalities (including City of LA Bureau of Sanitation, City of LA Department of Water and Power, LA County Department of Public Works, and LA County Sanitation Districts), to conduct the Los Angeles River Environmental Flows Project (Project). The goals of the project are to develop a process for establishing flow criteria, to apply the process to provide recommendations for flow criteria in the LA River, and to produce tools and approaches to evaluate management scenarios necessary to achieve recommended flow criteria. The project also serves as an important pilot application of the California Environmental Flows Framework (CEFF) by demonstrating how CEFF can be applied in a highly urbanized watershed where flow alteration is primarily caused by wastewater and stormwater discharges. The outcomes of this project may also serve as a model for assessing similar situations in other river systems.

For more information about this project, go to the Background and History of the Los Angeles River Flows Project on the State Water Board's website.

t, go to the Background and History of the Los

https://www.sccwrp.org/about/research-areas/ecohydrology/los-angeles-river-flows-project/

onmental Flows Project

Related Pages

Ecohydrology Research Plan Ecohydrology

Progress reports

Technical reports

Outreach materials

TAC meeting materials

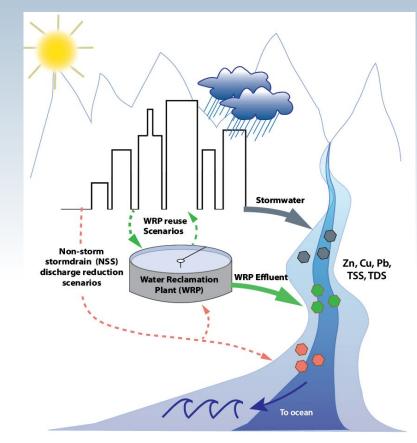
Stakeholder meeting

Data and dashboard

materials

Process and Decision Support Tools for Evaluating Flow Management Targets to Support Aquatic Life and Recreational Beneficial Uses of the Los Angeles River Los Angeles River

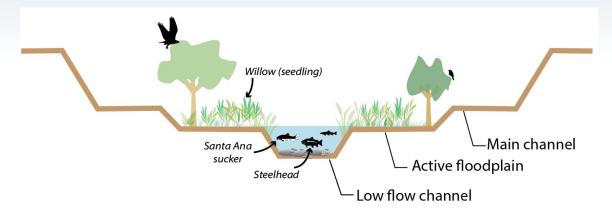
Environmental Flows Project


Enc D. Stein Kris Taniguchi-Qu, Jordyn Wollond Elizabeth Gallo Katie hving Daniel Philippus Reza Abdi Victoria Hennon Anna Tinoco Peter Mohammad Ashley Rust Terri S. Hogue

Southern California Coastal Water Research Project SCCWRP Technical Report #198

- Insilea

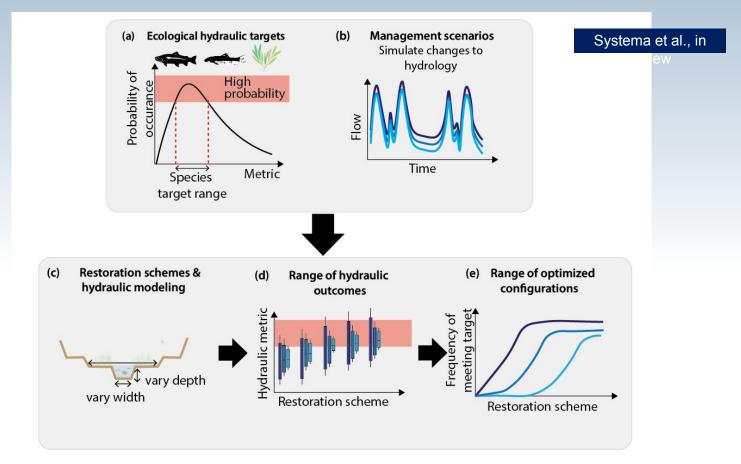
Water Quality Assessment


- Reducing WRP discharges may decrease pollutant loads but increase concentrations of TDS, TSS, copper, and lead
- Zinc concentrations increased with reduction in dry-weather stormdrain flows
- Overall, copper, zinc, and TDS WQ objectives were met less frequently with increasing flow reduction

Wolfand et al., 2022, ACS EST Water

LA River Restoration Analysis

- Evaluated in-channel restoration options
 - What changes to channel design can accommodate altered flows to support ecological beneficial uses?
- Developed approach and illustrated at example study reaches


Systema et al., in review

Study Locations

- Mainstem below Burbank WRP
 Rio Hondo
- (3) Compton Creek (CP2A)
- 4 Mainstem lower



General Approach

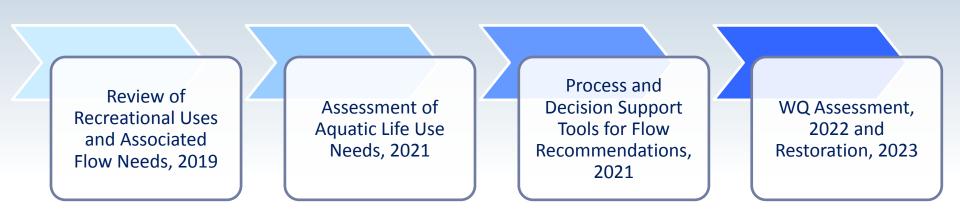
Restoration Analysis

- Ongoing coordination with:
 - LA River Master Plan efforts
 - LA River Fish Passage Study
 - Stakeholder working group
- Final manuscript in review

Future Use of Decision Support Tools

- Municipalities to evaluate proposals to regulatory agencies
- Regulatory agencies to evaluate potential flow requirements
- Planning entities to inform restoration and management decisions
- Temperature analysis
 Climate change + reduced effluent discharge

Online Dashboard


https://sccwrp.shinyapps.io/lar_eflows_shinyapp/

Project Resources

https://www.sccwrp.org/about/research-areas/ ecohydrology/los-angeles-river-flows-project/

Reporting Milestones

LA River Flows Participating Entities

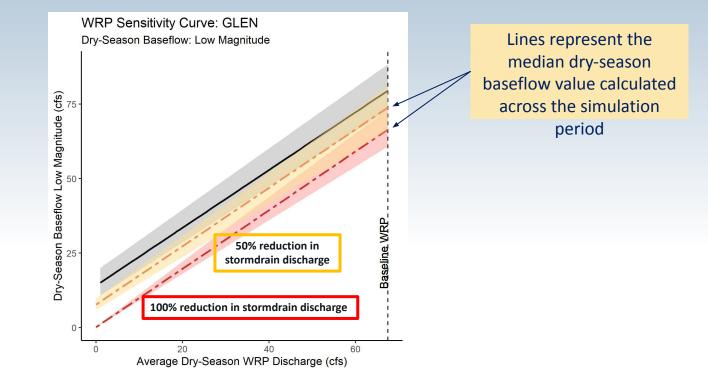
ግ

Watershed Conservation Authority

LOS ANGELES COUNTY SANITATION DISTRICTS

Converting Waste Into Resources

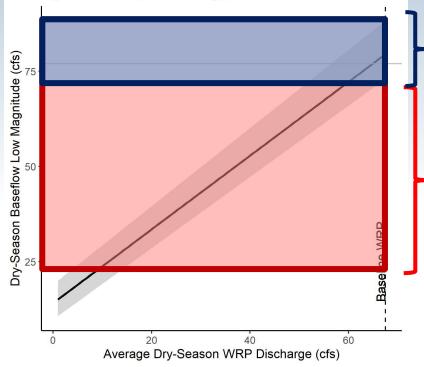
Mountains Recreation & Conservation Authority



Preliminary Scenario Summary: Glendale Narrows

Scenario	Instream Dry-Season Baseflow Magnitude	Reduction in Dry-Season Baseflow Magnitude		Aquatic Life Use	
	cfs	%	cfs	Willow	Cattail
Baseline	80	0	0	High	High
Baseline + no urban baseflow	67	16	13	High	Medium
WRP 50% reduction	47	41	33	High	Medium
WRP 50% reduction + no urban baseflow	37	54	43	High	Medium
WRP 100% reduction	13	84	67	Low	Medium
WRP 100% reduction + no urban baseflow	3	96	77	Low	Medium

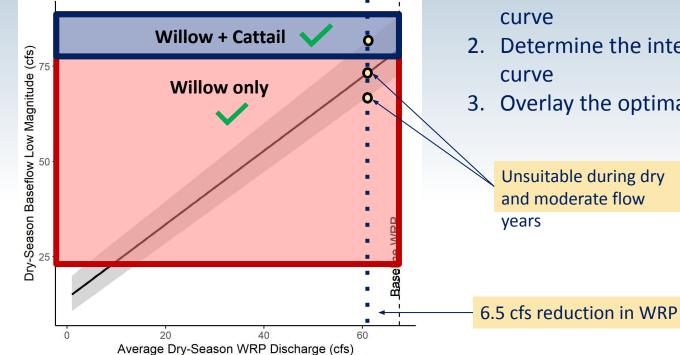
Example summary table that can be derived from the scenario analysis


Sensitivity Curves to Assess Effects of WRP and Stormdrain Reductions

Curves allow for consideration of a virtually unlimited number of scenarios

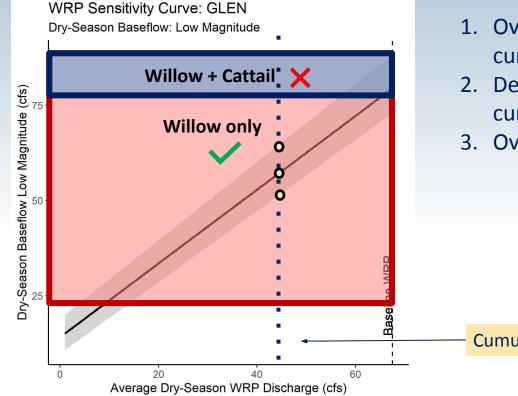
Use of Sensitivity Curves to Evaluate Scenarios

WRP Sensitivity Curve: GLEN Dry-Season Baseflow: Low Magnitude

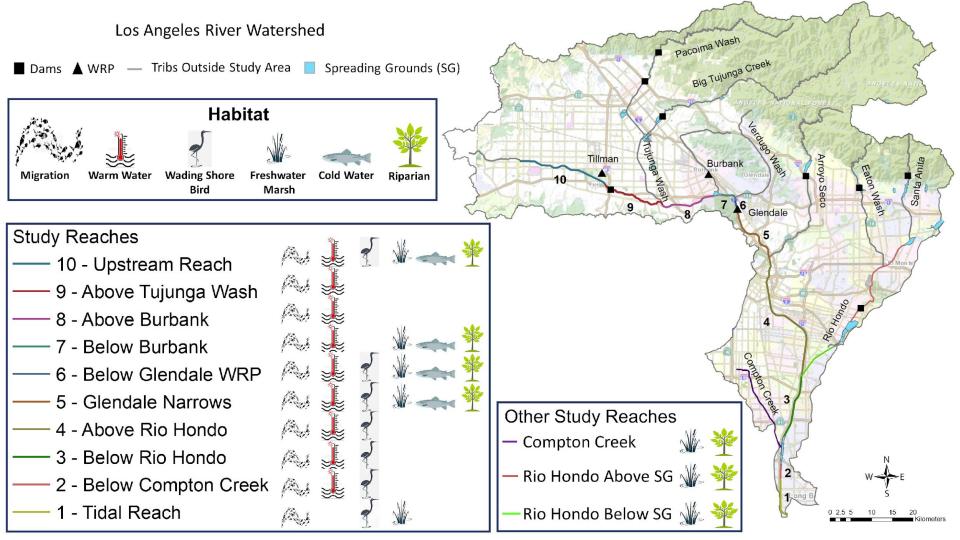


Flow range necessary to support willow-riparian habitat AND freshwater (cattail) marsh

Flow range necessary to support willow-riparian habitat


Use of Sensitivity Curves to Evaluate Project Proposals

WRP Sensitivity Curve: GLEN Dry-Season Baseflow: Low Magnitude


- 1. Overlay *proposed* reduction on sensitivity
- 2. Determine the intersection points with the
- 3. Overlay the optimal flow ranges

Use of Sensitivity Curves to Evaluate Cumulative Effects

- 1. Overlay *cumulative* reduction on sensitivity curve
- 2. Determine the intersection points with the curve
- 3. Overlay the optimal flow ranges

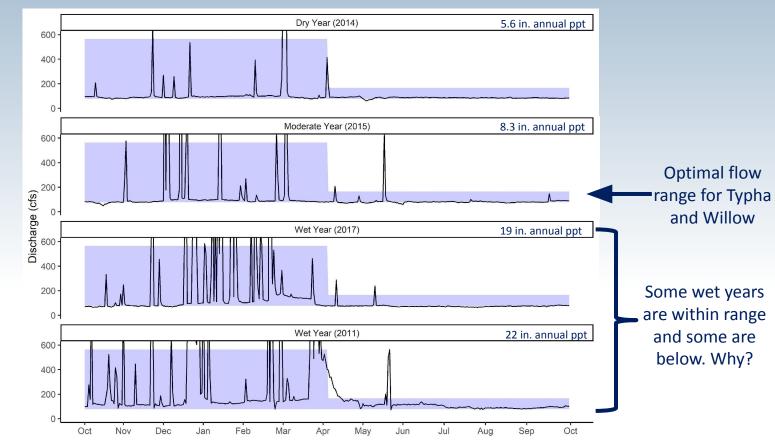
Cumulative WRP reduction: 19.2 cfs

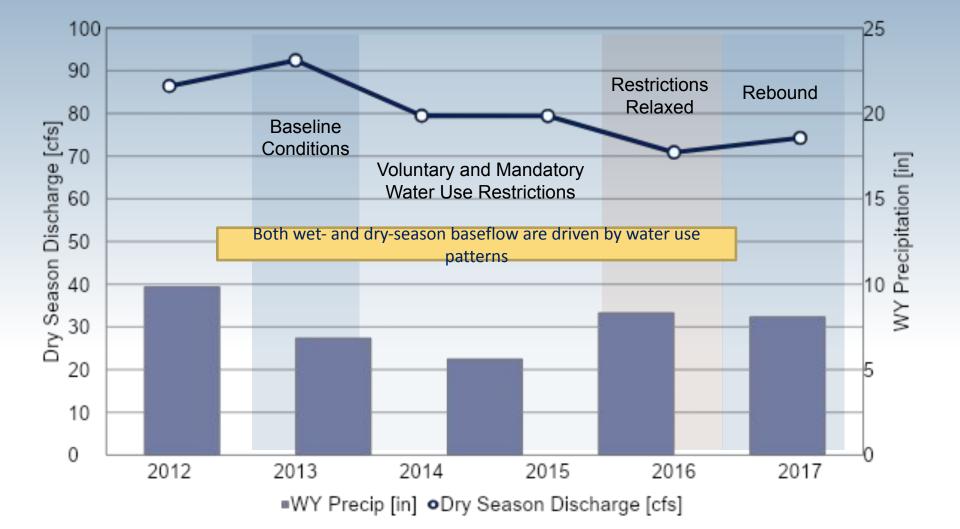
Long-term Stormwater Capture Potential

Source: Stormwater Capture Master

BMP Implementation Rate

Table 5. BMP Implementation Ratesfor Geophysical Categorization in theConservative Scenario


Land use	А	В	С
High Density Single Family Residential	35%	25%	15%
Low Density Single Family Residential with Moderate Slope	30%	20%	10%
Low Density Single Family Residential with Steep Slope	22%	12%	2%
Multi-family Residential	35%	25%	15%
Commercial	37%	27%	17%
Institutional	57%	47%	37%
Industrial	50%	<mark>4</mark> 0%	30%
Transportation	52%	42%	32%
Secondary Roads	47%	37%	27%


Table 6. BMP Implementation Rates for Geophysical Categorization in the Aggressive Scenario

Land use	А	В	С
High Density Single Family Residential	50%	40%	30%
Low Density Single Family Residential with Moderate Slope	40%	30%	20%
Low Density Single Family Residential with Steep Slope	25%	<mark>1</mark> 5%	5%
Multi-Family Residential	50%	40%	30%
Commercial	55%	45%	35%
Institutional	95%	85%	75%
Industrial	80%	70%	60%
Transportation	85%	<mark>75</mark> %	65%
Secondary Roads	75%	65%	55%

Source: Stormwater Capture Master

Where are we now relative to optimal flow range?

